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Let [#m]�
m=1 be a sequence of positive numbers, and let f : Rd � C be a function

such that for some C=Cf <� and every ! # Rd there exist polynomials Pm (x)=
Pm (x; !), deg Pm�m, m=0, 1, ..., satisfying inequalities

sup[ | f (x)&Pm (x; !)| : |x&!|�#m]�C exp[&m].

In this paper the authors study smoothness, quasianalytic and analytic properties
of f in terms of the sequence [#m]�

m=1 . The results are new even for the case that
Pm are Taylor polynomials. Using them, the authors prove a Cartwright-type
theorem on entire functions of exponential type bounded on some discrete subset
of the real hyperplane and construct such a weight-function .: Rd � R, d>1, that
algebraic polynomials are dense in C 0

. |A
(A) for every affine subspace A/Rd of

dimension less than d, but are not dense in the space C 0
.(Rd). � 1996 Academic

Press, Inc.

Introduction

In what follows we use the standard notations of multidimensional
analysis.

Let a function f : Rd � C have all derivatives up to the order m at the
point !. We denote by Tm (x; !) its Taylor polynomial

:
|k|1�m

Dkf (!)(x&!)k�k !
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centered at the point !. Here, k=(k1 , ..., kd) # (Z+)d is a multiindex;
|k| 1=k1+ } } } +kd ; k1 ! } } } kd! ; zk=zk1

1 } } } zkd
d for every z=(z1 , ..., zd) # Cd;

Dk f (!)=
�|k|1 f

�xk1
1 } } } �xkd

d

(!).

We denote various constants by C.
Let [#m]�

m=1 be a sequence of positive numbers, and let P[#m] be a
linear space of all functions f : Rd � C such that

_C=Cf _m0=m0( f ) # Z+(\m # Z+ : m�m0) \! # Rd

\_ polynomial Pm (x)=Pm (x; !)=:
k

bk (!) xk :

deg Pm (x)=max[ |k| 1 : |bk|{0]�m+ :

sup[ | f (x)&Pm (x; !)| : x # Rd, |x&!|�#m]�C exp[&m].

Here, |z| 2=|z1|2+ } } } +|zd| 2 for every z=(z1 , ..., zd) # Cd.
Let K(!) be a positive continuous function defined on Rd. By P[#m ; K(!)]

we denote a linear space of all functions f : Rd � C such that

_C=Cf _m0=m0( f ) # Z+(\m # Z+ : m�m0) \! # Rd

(_ polynomial Pm (x)=Pm (x; !) : deg Pm (x)�m):

sup[ | f (x)&Pm (x; !)| : x # Rd, |x&!|�#m]�CK(!) exp[&m].

Using the same sequence [#m]�
m=1, we define two other linear spaces. We

call the first of them T[#m]. It consists of all functions f # C �(Rd) such
that

_C=Cf _m0=m0( f ) # Z+(\m # Z+ : m�m0) \! # Rd:
(1)

sup[ | f (x)&Tm (x; !)| : x # Rd, |x&!|�#m]�C exp[&m].

The second space is generated by a function K(!), together with the
sequence [#m]�

m=1. We denote it by T[#m ; K(!)]. It consists of all func-
tions f # C�(Rd) such that

_C=Cf _m0=m0( f ) # Z+(\m # Z+ : m�m0) \! # Rd:

sup[ | f (x)&Tm (x; !)| : x # Rd, |x&!|�#m]�CK(!) exp[&m].

It is evident that T[#m]/P[#m] and T[#m ; K(!)]/P[#m ; K(!)]. If
K(!)�C>0 on Rd, the inclusions T[#m]/T[#m ; K(!)] and P[#m]/
P[#m ; K(!)] are also true.
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If #m�;m for all m, P[;m ; K(!)] is a subspace of P[#m ; K(!)] and
T[;m ; K(!)] is a subspace of T[#m ; K(!)].

The subject of our research considerably differs from the local
approximation theory developed by A. Yu. Brudnyi [Br] because of our
rigid connection between the size of sets on which polynomials realize
approximation and the degree of approximation.

The paper includes four sections. In the first section we study elementary
properties of the introduced spaces and differentiability of their elements.
The following theorem describes some elementary properties of these
spaces:

Theorem 1. The following three statements are true:

(i) For any K(!) the inclusion P[#m ; K(!)]/C[Rd] is valid;

(ii) If f # P[#m], it cannot grow along Rd faster than some exponen-
tial C exp[C |x|].

(iii) Let f # T[#m], and let m0 be the number from (1). Then all par-
tial derivatives of f of order m0 or more are bounded on Rd. Therefore, f
cannot grow along Rd faster than some polynomial of degree m0 .

Theorems 2 and 3 describe the relationship between the introduced
above spaces and Cn(Rd).

Theorem 2. (i) If the inequality

lim inf
m � �

(log(1�#m))�m>1�n (2)

holds for some n # N, then

[ f # Cn(Rd) : ((\k # (Z+)d : |k| 1=n) : sup[ |Dkf (x)| : x # Rd]<�)]

/P[#m] ;

(ii) Let (2) hold, and let f be an arbitrary element of Cn(Rd). There
exists such a positive continuous function K(!) that f # P[#m ; K(!)].

The following statement is an evident consequence of Theorem 2:

Corollary 1. If

lim inf
m � �

(log(1�#m))�m>0, (3)

then every function f # C�(Rd) belongs to P[#m] provided that all its
derivatives of order m�m0( f ), m0( f )<�, are bounded.
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Theorem 3. Let lim supm � �(log(1�#m))�m<1�n be valid for some
natural n. Then P[#m ; K(!)]/Cn�(2+=)(Rd) for any positive continuous
function K(!) and any =>0.

It is useful to recall that if : � N, :>0, then C:(Rd) consists of all func-
tions f # C [:](Rd) whose derivatives of the maximal order [:] are elements
of the space Lip:&[:](Rd). The following statement is a simple consequence
of Theorem 3:

Corollary 2. If lim supm � �(log(1�#m))�m�0 then P[#m ; K(!)]/
C�(Rd) for any positive continuous function K(!).

In the second section we study quasianalyticity of spaces T[#m] and
P[#m]. To formulate the obtained results, we should recall some definitions.

Let L be a linear subspace of C�(Rd). We say that L is 2-quasianalytic
if the implication

( f # L) 7 (_! # Rd \k # (Z+)d : Dkf (!)=0) O f (x)#0.

is true.
Given a sequence of positive numbers [M&]�

&=0, M0=1, denote by
[Mt

& ]�
&=0 a convex regularization of [M&]�

&=0 , i.e. the numbers log Mt

&

are obtained from log M& by means of the Newton polygonal regulariza-
tion.

Theorem 4. Let 0<C1�#m&1 �#m�C2<�. A space T[#m] is
2-quasianalytic if, and only if,

:
�

m=1

1�(m�#m)*=�. (4)

Here, ((m�#m)*)m=((m�#m)m)t.

It turns out that the fulfillment of (4) is a criterion of another kind of
quasianalyticity for spaces T[#m], and even for spaces T[#m ; K(!)]:

Let K(!) be a continuous function on Rd. There is no nontrivial function
with a compact support in T[#m ; K(!)] if, and only if, condition (4) is
fulfilled.

Of course, we assumed again that

0<C1�#m&1 �#m�C2<�.

This coincidence is rather striking in comparison with the case of spaces
C[M&](Rd), d>1, where the criteria of these kinds of quasianalyticity are
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different (later we will recall the definition of C[M&](Rd) and the corre-
sponding criteria).

A condition on #m close to (4) is necessary and sufficient for the Beurling-
type quasianalyticity of spaces P[#m].

Theorem 5. Let limm � � #m=0. There is no nontrivial function in
P[#m] vanishing on some set of positive Lebesgue measure if, and only if,

:
�

m=1

#m�m=�.

If lim supm � � #m>0, we can say more:

Theorem 6. If lim supm � � #m>0, then for every positive continuous
function K(!) there is not a nontrivial function in P[#m ; K(!)] vanishing on
some set of positive Lebesgue measure.

In the third section we consider spaces whose elements are analytic func-
tions. In view of Theorem 1, it is natural to study spaces T[#m ; K(!)] and
P[#m ; K(!)] where restrictions on the growth of elements are weaker. The
first result of this section is a theorem on holomorphic functions in a layer.

Theorem 7. The following three statements are equivalent:

(i) The function f can be analytically extended from Rd into some
layer symmetric with respect to Rd, say the layer

[z=x+iy # Cd : x, y # Rd, |y|<H], H>0;

(ii) There exist a positive sequence [#m]�
m=1 and a positive continuous

function K(!) such that

lim inf
m � �

#m>0

and f # T[#m ; K(!)];

(iii) There exist a positive sequence [#m]�
m=1 satisfying the previous

condition and a positive continuous function K(!) such that f # P[#m ; K(!)].

Let f : Cd � C be an entire function. We say that it is of order \ if

lim sup
|z| � �

(log log | f (z)| )�log |z|=\.
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Let \ # (0, �), and let f be an entire function of order \. We say that f is
of type _ with respect to the order \ if

lim sup
|z| � �

(log | f (z)| )� |z| \=_.

If \=1 and _ # (0, �), f is called an entire function of exponential type.
We denote by [\; _]d the set of all entire functions in Cd of type _ or less
with respect to the order \. Also denote

[\; �)d= .
_>0

[\; _]d .

Theorem 8. The following five statements are equivalent:

(i) A function f can be extended from Rd into Cd as an element of
[\; �)d ;

(ii) For some p>0 and A<� f # T[pm1�\; exp[A |!|\]];

(iii) For some q>0 and B<� f # P[qm1�\; exp[B |!|\]];

(iv) There exist p>0 and ! # Rd such that f # C �([!]) and

_C \m # N : sup[ | f (x)&Tm (x; !)| : |x&!|�pm1�\]�C exp[&m];

(v) There exist q>0, ! # Rd, and polynomials Pm (x)=Pm (x; !),
deg Pm�m, m # N, such that

_C \m # N : sup[ | f (x)&Pm (x; !)| : |x&!|�qm1�\]�C exp[&m].

We say that f # C�([!]) if there exist such neighborhoods Uj , j # Z+ ,
of ! that

U1#U2# } } } ; f # C j (Uj), j # N.

In this context increasing of the smoothness corresponds to decreasing of
the difference between Taylor polynomials and polynomials of the best
approximation. For example, this difference is irrelevant at the level of the
order of entire functions.

The last, fourth, section is devoted to applications of the developed
theory. To formulate the main result of this section, we need the following
definition:

A set E/Rd is called an =-net if

\x # Rd _! # E : |x&!|<=.

Theorem 9. Let positive numbers = and _ satisfy the condition

200=_<?. (5)
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Then the inequality

sup[ | f (x)| : x # Rd]�sup[ | f (!)| : ! # E]�(1&=_)

holds for every =-net E in Rd and every entire function f # [1; _]d .

Such sets E that for some constant C the estimate

sup[ | f (x)| : x # Rd]�C sup[ | f (!)| : ! # E]

holds for all functions f # [1; _]d are usually called normalizing (for
given _). However, we prefer to call them Cartwright sets in honor of
M. L. Cartwright who proved the first result in this area [C]:

For every _ # (0, ?) there exists such a finite value C_ that the inequality

sup[ | f (x)| : x # R]�C_ sup[ | f (m)| : m # Z]

is valid for all functions f # [1; _]1.

Cartwright's result was generalized and refined quite a few times (see, for
example, [Bo], [BS], [Ber], [Ak], [Le1], [Le2], [A], [M], and [DL];
in the last the complete description of all one-dimensional Cartwright sets
is given), but all these authors studied only functions of one variable. It is
easy to see that the direct product of d one-dimensional Cartwright sets for
given _ is a Cartwright subset of Rd for this _. The first result on general
but massive (in the sense of Lebesgue measure) Cartwright subsets of Rd

was proved by B. Ya. Levin in 1971 [Le3]. Discrete Cartwright subsets of
Rd were studied in [Lo1], [Lo2] where the theorems similar to Theorem 9
were proved. The essential difference between these theorems and
Theorem 9 is the independence of inequality (5) from dimension. Using
more complicated calculation, we can reduce 200 to 16 in (5). Of course,
the constant 16 is far from the best��for d=1 the best constant in (5)
is 1.

Cartwright-type theorems is a powerful tool for an analyst because of the
ability to ``improve'' estimates extending them from subsets of Rd onto this
space. Mention only their applications to the probability theory [Lo3],
edge-of-the-wedge theorems [Lo4], and the theory of Radon transform
[LS]. Here, we will use Theorem 9 for the classical problem of weighted
approximation by polynomials on Rd. Let us recall some definitions.

Let .: Rd � R+ be such a function that .�1 and

\m # N : lim
|x| � �

|x|m�.(x)=0.

We say that .(x) is a weight and define the corresponding weighted space

C 0
.=C 0

.(Rd)=[ f # C(Rd) : lim
|x| � �

f (x)�.(x)=0].
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If we set & f &=sup[ | f (x)| �.(x) : x # Rd], C 0
. is a normed space. If, besides,

.(x) is bounded on each compact, C 0
. appears to be a Banach space. For

d=1, there are several criteria of completeness of algebraic polynomials in
this space (see [Me], [AkB], and [K]).

It is easy to see that if algebraic polynomials of d variables are dense in
the space C 0

. (Rd), then algebraic polynomials are dense in the space
C0

. |A
(A) for any affine subspace A of Rd. Using Theorem 9, we prove that

this necessary condition is not sufficient.

Theorem 10. There exists a weight .: Rd � R, d>1, with the following
properties:

(i) . is bounded on each compact set;

(ii) All points of discontinuity of . are removable, and the set of all
these points is uniformly discrete;

(iii) For any affine subspace A/Rd, dim A<d, algebraic polynomials
are dense in the space C 0

. |A
(A);

(iv) Algebraic polynomials are not dense in the space C 0
. (Rd).

Elementary Properties of Spaces P[#m], P[#m ; K(!)], T[#m],
T[#m ; K(!)] and Differentiability of Their Elements

(Proofs of Theorems 1, 3, and 3)

Proof of Theorem 1. (i) Let ! be an arbitrary point of Rd. Then for
every sufficiently large m # N

lim sup
x � !

| f (x)& f (!)|� lim
x � !

|Pm (x; !)&Pm (!; !)|

+CK(!) exp[&m]=CK(!) exp[&m].

Since m is arbitrary, f is continuous at the point !.

(ii) Let f # P[#m], and let C and m0 be the constants from the defini-
tion of this space. Let K=C exp[&m0] , and let

!(k)=(! (k)
1 , ..., ! (k)

d )=(#m0
�- d)k # Rd,

Qk=[x=(x1 , ..., xd) # Rd : |xj&! (k)
j |�#m0

�- d, j=1, ..., d],

P� k (x)=Pm0
(x; !(k))

for every k # Zd. We call the two cubes Qk and Ql neighboring if

max[ |kj&lj | : j=1, ..., d]=1.
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The corresponding polynomials P� k and P� l are also called neighboring. It is
evident that the intersection of two neighboring cubes contains at least one
cube with edges parallel to the coordinate axes and the sidelength equal to
#m0

�- d. Every cube Qk , k=(k1 , ..., kd), can be connected with Q0

by the chain of neighboring cubes. The least length of this chain is
L=max[ |kj | : j=1, ..., d]. Denote by Q0 , Qk(1) , ..., Qk(L)=Qk the cubes of
this minimal chain. The inequality

|P� k(1)(x)&P� 0(x)|�2K

holds at every point x of the intersection Qk(1) & Q0 . By the S. Bernstein
Inequality the estimate

|P� k(1)(x)|�[2K+:](C�#m0
)m0

where :=max[ |P� 0(x)| : x # Q0] is valid at every point x # Qk(1) . Repeating
this argument, we obtain that

|P� k(2)(x)|�2K[(C�#m0
)m0+(C�#m0

)2m0]+:(C�#m0
)2m0, x # Qk(2) ,

} } }

|P� k (x)|=|P� k(L)(x)|

�2K[(C�#m0
)m0+ } } } +(C�#m0

)Lm0]+:(C�#m0
)Lm0, x # Qk .

The last one of these estimates implies (ii) because

max[ | f (x)&P� k (x)| : x # Qk]�K.

(iii) Let m�m0 be an arbitrary natural number, and let
$=$m=min[#m&1 , #m]. For every ! # Rd we have

max {} :
|k|1=m

Dkf (!)(x&!)k�k ! } : |x&!|�$=�C(e&m+1+e&m) .

From this inequality we will deduce estimates for the corresponding partial
derivatives using the homogeneity of the differential.

Denote Dkf (!)�k ! by bk . The estimate

} :
|k|1=m

bk xk }�C |x|m

holds for all x # Rd. If x=(x1 , ..., xd), y=(y1 , ..., yd), y1 } } } yd{0, are
arbitrary vectors of Rd, then the inequality
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log } :
|k|1=m

bk (x+iy)k }
�

|y1 } } } yd |
?d |

Rd \log } :
|k|1=m

bk tk }+ `
d

j=1

dtj

(x j&tj)
2+y2

j

�log C+m
|y1 } } } yd |

?d |
Rd

(log |t| ) `
d

j=1

dtj

(x j&tj)
2+y2

j

is valid. In particular, for each z # [z=(z1 , ..., zd) # Cd : |zj |�1, j=1, ..., d]
we have

} :
|k|1=m

bk zk }�C.

By virtue of the Cauchy Inequalities the values of |bk | , |k| 1=m, are
bounded by the same constant. Theorem 1 is proved.

Remark 1. The polynomial growth of a function guaranteed by the
statement (iii) of Theorem 1 can be obtained under the weaker assumption.
The following statement is true:

If f # Cm(Rd) is such a function that

_C<� _$>0 \! # Rd : max[ | f (x)&Tm (x; !)| : |x&!|�$]�C, (6)

then f is majorized by some polynomial of degree m.

Proof of Remark 1. We start from the case d=1. Let f # Cm(R) satisfy
estimate (6). The inequalities

} |
x+:

x
f (m)(t)(x+:&t)m&1 dt }�C,

} |
x+:

x+:(m&1)�m
f (m)(t)(x+:&t)m&1 dt }�C

hold for every x # R and every : # [&#, #]. Here, C does not depend on x
and :. Therefore,

} |
x+#(m&1)�m

x
f (m)(t)(x+#&t)m&1 dt }�2C=C.

Combining this inequality with the inequality

} |
x+#(m&1)�m

x
f (m)(t)((x+#&t)&#�m)m&1 dt }�C,
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we obtain that

} |
x+#(m&1)�m

x
f (m)(t)((x+#&t)m+2+ } } } ) dt }�C

where the dots stand for all terms of degree less than (m&2). Applying this
argument once more, we see that the inequality

} |
x+#(m&2)�m

x
f (m)(t)((x+#&t)m&3+ } } } ) dt }�C

holds for all x # R and some C that does not depend on x. Continuing this
procedure, we obtain that the estimate

} |
x+#�m

x
f (m)(t) dt }�C

is valid for every x # R. By Newton-Leibnitz Formula we have

| f (m&1)(x+#�m)|�| f (m&1)(x)|+C

for every x # R. It shows that the inequality

| f (m&1)(x)|�C |x|+max[ | f (m&1)(!)| :&#�m�!�#�m]

holds for all real x. It is possible only for functions that grow no faster than
some polynomial of degree m.

Assume now that d>1 and introduce the family of functions .| (t)=
f (t|), t # R, | is an element of the unit sphere Sd&1 of Rd. Our previous
argument is valid for every .| . It is easy to see that the constants in the
estimates can be chosen independent of |. Therefore, f (x) cannot grow
faster than some polynomial of variable |x| and degree m. Remark 1 is
proved.

Proof of Theorem 2. (i) Let f # C n(Rd), and let all its partial
derivatives of order n be bounded. Without loss of generality, we can
assume that f is real-valued. For all x # Rd and all ! # Rd we have

| f (x)&Tn&1(x; !)|= }{(x1&!1)
�

�x1

+ } } } +(xd&!d)
�

�xd=
n

f ( y)�n ! }
where y is some point of the interval (x; !). Therefore,

| f (x)&Tn&1(x; !)|�C |x&!|n
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where C does not depend on x and !. Let rn
m=e&m, i.e., rm=e&m�n. The

inequality

| f (x)&Tn&1(x; !)|�C exp[&m]

is valid in the ball [x # Rd : |x&!|�rm] for all ! # Rd provided that m�n.
Since

(log(1�rm))�m#1�n,

f belongs to all spaces P[#m] satisfying inequality (2) provided that the
first (n&1) #m are suitable.

(ii) To prove this statement, we should only change the constant C
to the function

K(!)=max {}{(x1&!1)
�

�x1

+ } } } +(xd&!d)
�

�xd=
n

f (y)�n ! } :

|x&!|�1, |y&!|�1=
in the proof of (i). Theorem 2 is proved.

Proof of Theorem 3. We need some facts on the 2-quasianalyticity. Let
[Mk], k # (Z+)d, M(0, ..., 0)=1, be a sequence of positive numbers, and let

C[Mk]=C[Mk](Rd)

=[ f # C�(Rd) :

(_L=Lf<� \x # Rd \k # (Z+)d : |Dk f (x)|�L |k|1+1Mk)].

The criteria of 2-quasianalyticity of this class are different for d=1 and
d>1. If d=1, the following theorem is true:

Theorem (Denjoy�Carleman�Ostrovsky, [Ma]). The class C[Mk](R)
is 2-quasianalytic if, and only if,

:
�

k=1

1� k
- (Mk)t=�.

For M0=M1=1, Mk=(k log2 k)k, k=2, 3, ..., the corresponding class
C[Mk](R) is not 2-quasianalytic. It is known (see, for example, [Ma])
that it contains a nonnegative function |(t) with the following properties:
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(i) \t # R\j # Z+ : ||( j)(t)|�M j ;

(ii) _a # (0, �) (say a=1) : supp |�[&a, a];

(iii) ��
j=&� |(t+ j )#1.

(i) implies that the estimate

max {} d
j

dt j | \t&{
h +} : t # R=�Mj h&j

is valid for every { # R, every h>0, and every j # Z.
Let x(0)=(x (0)

1 , ..., x (0)
d ) be an arbitrary point of Rd. We will prove that

every function f # P[#m ; K(!)] is smooth enough on the cube

61�2=[x=(x1 , ..., xd) # Rd :&1�2�xj&x (0)
j �1�2, j=1, ..., d].

Let & # N be large enough, and let N&=2([- d�#&]+1). Divide

61=[x=(x1 , ..., xd) # Rd :&1�xj&x (0)
j �1, j=1, ..., d].

into N d
& equal little cubes _p=_p(&), p=1, ..., N d

& . Denote by x(p) the center
of _p and by h& its sidelength. It is evident that #&�(2 - d)�h&�#&�- d. By
the definition of P[#m ; K(!)] for every p # [1, ..., N d

&] there exists such a
polynomial Pp(x)=P& (x; x (p)) that deg Pp�& and that

max[ | f (x)&Pp (x)| : x # _p]�C exp[&&], C=max[K(!) : ! # 61].

Therefore, the estimate

} f (x)& :
N&

d

p=1
\ `

d

j=1

|((xj&x (p)
j )�h&)+ Pp(x) }�C exp[&&] .

holds at every point x of the cube

61&h&=[x=(x1 , ..., xd) # Rd : &1+h&�xj&x (0)
j �1&h& , j=1, ..., d].

By Jackson Theorem (see [N, Ch. IV]) for the function |(t�h&) and for
each l # N there exists such a polynomial Q(t)=Ql (t) that deg Ql�l and

max[ ||(t�h&)&Q(t)| :&2�t�2]�C &M& h&&
& l&&

�(C&(log2 &)�(l#&))&�(exp[&�n$]�l)&.

Here, C is an absolute constant and

L=lim sup
m � �

(log(1�#m))�m<1�n$<1�n, n$>0.
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If l=[exp[2&�n]]+1, then

max[ ||(t�h&)&Q(t)| :&2�t�2]�exp[&&2�n].

Define the polynomial

R(x)=R& (x)= :
N &

d

p=1
\ `

d

j=1

Q(xj&x (p)
j )+ Pp (x).

We have

deg R�d([exp[2&�n]]+1)+&.

Since

`
d

j=1

aj& `
d

j=1

bj= :
d

i=1
\ `

i&1

j&1

aj+ (ai&bi) \ `
d

j=i+1

bj+ ,

the estimate

| f (x)&R(x)|� } f (x)& :
N&

d

p=1
\ `

d

j=1

|((xj&x (p)
j )�h&)+ Pp (x) }

+max[ |Pp (x)| : p=1, ..., N d
& , x # 61]

_ :
N &

d

p=1
} `

d

j=1

|((xj&x (p)
j )�h&)& `

d

j=1

Q(xj&x (p)
j ) }

�C exp[&&]

+C max[ |Pp (x)| : p=1, ..., N d
& , x # 61] N d

& exp[&&2�n]

holds at every point

x # 62�3=[x=(x1 , ..., xd) # Rd :&2�3�xj&x (0)
j �2�3, j=1, ..., d].

By virtue of S. Bernstein Inequality

max[ |Pp (x)| : p=1, ..., N d
& , x # 61]�(C�#&)

&

where C does not depend on &. Since N&=O(#&1
& ), these estimates imply

that the inequality

| f (x)&R(x)|�C exp[&&]+(C�#&)
d+& exp[&&2�n]

�C exp[&&]+C exp[(d+&)&�n"&&2�n]

�C exp[&&] (7)
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holds at every point of 62�3 provided that n$&1<n"&1<n&1 and & is large
enough. The estimate

log(deg R&)�(2+=)&�n (8)

is valid for every =>0 and all &>&0(=), &0(=)<�. It follows from (7) and
(8) that

max[ | f (x)&R(x)| : x # 61�2]�C�(deg R&)n�(2+=).

To finish the proof of Theorem 3, we should only refer to the well-known
S. Bernstein Theorem (see [N, Ch. IV]) that guarantees the inclusion
f # C n�(2+=). Theorem 3 is proved.

2. Quasianalyticity (Proofs of Theorems 4, 5, and 6)

Proof of Theorem 4. Sufficiency. Let f # T[#m]. We have the following
estimate of its differential:

sup {} :
|k|1=m

Dk f (!)(x&!)k�k ! } : !, x # Rd; |x&!|�min[#m&1 , #m]=
�C(exp[&m+1]+exp[&m])�C exp[&m].

As we have already verified, this estimate implies that the inequality

|Dkf (!)|�k ! exp[m log(1�#m)+O(m)]�exp[m log(m�#m)+O(m)] (9)

holds for every ! # Rd and all k # (Z+)d, |k| 1=m.
We need the following criterion for 2-quasianalyticity of classes

C[Mk](Rd), d>1:

Theorem (Matsaev�Ronkin, [MR]). Class C[Mk](Rd), d>1, is
2-quasianalytic if, and only if, the appropriate classes

C[M (m, 0, ..., 0)](R), ..., C[M (0, ..., 0, m)](R)

are 2-quasianalytic.

By this theorem we should only verify that the class C[Mk] where
M0=1 and M&=(&�#&)

&, & # N, is 2-quasianalytic. By virtue of the Denjoy�
Carleman�Ostrovsky Theorem the 2-quasianalyticity is equivalent to the
divergence of series (4). The sufficiency is proved.
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Necessity. Let

:
�

j=1

1�( j�#j)*<�.

By the Matsaev�Ronkin Theorem for every p>0 there exist such a non-
trivial function

f = fp # C[k !#&|k|1
|k|1&1]

and such a point ! # Rd that

\k # (Z+)d : Dkf (!)=0;

\k # (Z+)d : sup[ |Dk f (x)| : x # Rd]�k!(p�# |k|1&1) |k|1 , #&1=1.

If p is small enough, the inequality

max {} f (x)& :
|k|1�m

Dkf (!)(x&!)k�k! } : |x&!|�#m=
�sup {} :

|k|1=m+1

Dkf (')(x&!)k�k! } : x, !, ' # Rd; |x&!|�#m=
� :

|k|1=m+1

#&m&1
m #m+1

m pm<(m+1)d pm�exp[&m]

holds for all ! # Rd. Theorem 4 is proved.

Let us prove the statement on another kind of quasianalyticity men-
tioned in the Introduction. At first, we will verify that there is no nontrivial
function with a compact support in the class T[#m]. For this purpose,
recall the following result:

Theorem (Lelong, [L], [MR]). There is no nontrivial function with a
compact support in the class C[Mk](Rd), d>1, if, and only if, the class
C[M� m](R), M� m=max[Mk : |k| 1=m], m # Z+, is 2-quasianalytic.

While proving the sufficiency in Theorem 4, we really proved that for all
m # N

sup[ |Dkf (!)| : |k| 1=m; ! # Rd]�m! exp[m log(1�#m)+O(m)].

Therefore, the sufficiency of (3) is a consequence of the Lelong Theorem.
By the same theorem the function fp defined in the proof of Theorem 4 can
be chosen so that it has a compact support. Since fp # T[#m] if p>0 is
small enough, the necessity of (4) for the quasianalyticity of T[#m] is also
proved.
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Let K: Rd � R be an arbitrary positive continuous function. It is easy to
see that if f : Rd � C has a compact support, then

( f # T[#m]) � ( f # T[#m ; K(!)]).

Therefore, our statement is really proved for the general case.
Some concepts and theorems are used in the proofs of both Theorem 5

and Theorem 6. It is convenient to introduce them proving Theorem 6. So,
we start with the proof of this theorem.

Proof of Theorem 6. Assume that d=1. We prove, to begin with, that
P[#m ; K(!)] is a so-called I-quasianalytic space. It means that every func-
tion of this space vanishing on some interval vanishes identically. Assume
the contrary: There exists such a function f # P[#m ; K(!)] that f |[a, b]=0,
a<b, but f (x) does not vanish identically on the union of any left
neighborhood of a and any right neighborhood of b. Suppose, for the sake
of definiteness, that f does not vanish identically on any left neighborhood
of a. Moving b to the left, if necessary, we can assume that

#=lim sup
m � �

#m>2(b&a).

Let [m+]�
+=1 be such a subsequence of N that

#= lim
+ � �

#m+ ,

and let R+ (x)=Pm+ (x; (a+b)�2), + # N. The sequence of polynomials
R+ (x), + # N, converges to f uniformly on [(a+b)�2&#�2, (a+b)�2+#�2].
Besides, this sequence tends to 0 with exponential degree of convergence on
[a, b]. By S. Bernstein Inequality this sequence converges to 0 on some
interval containing [a, b]. It contradicts our assumption. So, f (x) should
be 0 identically.

Let us verify now that every function f # P[#m ; K(!)] vanishing on some
set e/R of the positive Lebesgue measure vanishes on some interval and,
therefore, vanishes identically. For this purpose, we need the particular case
d=1 of the following result:

Theorem (Schaeffer�Levin). Let E be a relatively dense subset of Rd, i.e.
there exist such constants L and $>0 (density characteristics of E ) that for
every x # Rd

measd E & [y # Rd : |y&x|�L]�$.

Then the estimate

sup[ |g(x)| : x # Rd]�exp[C_Ld+1�$] sup[ |g(!)| : ! # E]
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holds for every entire function g of exponential type _. Here C=Cd depends
on d only.

This theorem for functions of one variable was proved by A. C. Shaeffer
[S] in 1953. The proof of the general case was obtained by B. Ya. Levin
[Le3] in 1971. The recent achievements in this area one can find in [LL],
[LLS], and [DL].

Without loss of generality we can assume that 0 is a point of density
of E. It means that

meas(e & [&2, 2])=22(1&')

where '='(2) � 0 as 2 � 0. Define a sequence of entire functions

g+ (z)=R+ (2 cos z), + # N,

of exponential types m+ respectively. These functions are bounded by
constants C exp[&m+] , C=max[K(!) :&1�!�1], on the relatively
dense set

E=[x # R : 2 cos x # e].

Since 2>0 is arbitrary, we can assume that the density characteristics of
E satisfy the inequality

C1 L2�$<1�2.

Here, C1 is the coefficient from the Schaeffer-Levin Theorem. By this
theorem

max[ |g+ (x)| : x # R]�C exp[&m+ �2], + # N,

or

max[ |Pm+ (t; 0)| :&2�t�2]�C exp[&m+�2], + # N,

So, f |[&2, 2]=0, and Theorem 5 is proved for the case where d=1. The
general statement can be easily obtained by reduction to the one-variable
case. Theorem 6 is proved.

Proof of Theorem 5. Prove, to begin with, Theorem 5 assuming that
d=1 and #m�m a 0 as m � �. In this case our argument is similar to
Beurling's proof of his well-known Quasianalyticity Theorem [Beu1].
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Sufficiency. Let f # P[#m] vanish on a set e of positive Lebesgue
measure. Without loss of generality, we can assume that 0 is a point of den-
sity of e. Define

F(s)=|
�

0
exp[&sx] f (x) dx.

Since by statement (ii) of Theorem 1 the function f (x) does not grow along
the real line faster than some exponential, say C exp[& |x| �2], the func-
tion F(s) is holomorphic and bounded in the halfplane _=Re s�1. Let m0

be the number from the definition of P[#m]. Fix, for a while, a natural
number m�m0 , define xl=xl (m)=3l#m �2 and denote by Rl (x) the
polynomials Pm (x; xl) for all l # Z. There exists a nonnegative function
|(x)=|m (x) # C�(R) with the following properties:

(i) supp |/[&#m , #m];

(ii) |(x) |[&#�2, #�2]#1;

(iii) ||$(x)|�C�#m for all x # R;

(iv) :
l # Z

|(x&xl)=1.

Extend | into the complex plane by means of the equality |(z)=|(Re z).
We have the following representation:

F(s)=|
�

0
exp[&sx] { f (x)& :

l�0

|(x&xl) Rl (x)= dx

+|
�

0
exp[&sx] { :

l�0

|(x&xl) Rl (x)= dx=I1+I2 . (10)

We will evaluate I1 and I2 separately.
The estimate of I1 is very simple: If _=Re s�1, then

|I1|�C exp[&m] |
�

0
exp[&_x] dx�C exp[&m]. (11)

The estimate of the term I2 is more complicated. By the Green Formula
applied to the rectangle 6R with the vertices 0, R, R+i, i we have

|
�6R

exp[&sz] { :
l�0

|(z&xl) Rl (z)= ds

=2i ||
6R

exp[&sz] { :
l�0

d
dz�

|(z&xl) Rl (z)= dx dy, z=x+iy.
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Applying the S. Bernstein Inequality to the polynomials Rl and noticing
that at every point z # C at most two terms of the integrand series are
different from 0, we see that the contribution of the right side of 6R to the
integral on the left-hand side tends to 0 as R � �. Therefore,

I2=i |
1

0
exp[&isy] R0(iy) dy

+|
�

0
exp[&s(x+i)] :

l�0

|(x+i&xl) Rl (x+i) dx

+2i ||
6

exp[&sz] { :
l�0

Rl (z)
d
dz�

|(z&xl)= dx dy

=I21+I22+I23 (12)

where 6=6� is the halfstrip [z=x+iy # C : x>0, 0< y<1]. Once
again, we will evaluate each of the terms separately.

Since #m � 0 as m � �, the Schaeffer-Levin Theorem guarantees that the
estimate

|R0(x)|�exp[&m+o(m)], m � �,

is valid for all x # [&#m , #m]. Therefore, the inequality

|R0(iy)|�exp[&m+o(m)](y�#m+- 1+(y�#m)2)m, m � �,

holds for every y # [0, 1]. If t=Im s� &2m�#m , then

|I21|�|
1

0
(y�#m+- 1+(y�#m)2)m exp[ty&m+o(m)] dy

�|
1

0
(1+2#�#m)m exp[ty&m+o(m)] dy

�exp[&m+o(m)] |
1

0
[(1+2#�#m) exp[&2y�#m]]m dy

�exp[&m+o(m)], m � �.

So,

|I21|�exp[&m+o(m)]. (13)

To estimate I23 , let us notice that the integrand vanishes outside the
union of the rectangles

..., [z=x+iy : #m�2�x�#m ; 0�y�1],

[z=x+iy : 2#m�x�5#m�2; 0�y�1], ...
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and equals

exp[&sz]
d
dz�

|(z&xl)[Rl+1(z)&Rl (z)]

on the rectangle situated between xl and xl+1. Since

|Rl+1(z)&Rl (z)|�2C exp[&m]

on the bottom side of the rectangle, the same argument we used to estimate
I21 shows that

|I23|�exp[&m+o(m)] :
l�0

exp[&_xl�2]

�exp[&m+o(m)], m � �. (14)

If xl&#m�x�xl+#m and 0�y�1, then

|Rl (x+iy)|�exp[x�2](C�#m)m.

Consequently, for t� &2m�#m we have

|I22|�2(C�#m)m |
�

0
exp[t&x�2] dx

�4 exp[m(&log #m+log C&2�#m)]<exp[&m]. (15)

(12), (13), (14), and (15) show that the estimate

|I2|�exp[&m�2] (16)

holds for t=Im s�&2m�#m and all natural m that are sufficiently large.
From (10), (11), and (16) we deduce that for all t=Im s�&2m�#m

|F(_+it)|�2 exp[&m�2]. (17)

Without loss of generality, we can assume that |F(s)|�1 on the line
s=1+it, &�<t<�. By (17) we have

|
�

&�
(log |F(1+it)| �(1+t2)) dt

�
1
2

:
�

m=m0
|

&2m�#m

&2(m+1)�#m+1

((&m+log 4)�(1+t2)) dt

�&
1
2

:
�

m=m0

m \#m

m
&

#m+1

m+1++O(1)= &
1
2

:
�

m=m0

#m

m
+O(1)=&�.
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Therefore, F(s)#0. In the same way one can verify that the left Laplace
transform of f vanishes. It means that f (x)#0.

If the sequence [#m�m] is not monotone, we apply such a transposition
{: N � N that #{(m) �{(m) a 0 as m � � (certainly, we can assume that the
values #m�m do not repeat) and change m to {(m) in the previous argu-
ment. For the case d=1 the sufficiency is proved.

Necessity. First assume that d=1. Let #m�m a 0. This restriction can
be removed by the same argument as in the proof of sufficiency.

We should prove that the convergence of the series ��
m=1 #m�m implies

the existence of a nontrivial function f # P[#m] vanishing on some set
of positive Lebesgue measure. Really, we will prove more: There exists
a nontrivial function f # P[#̂m] where #̂m=max[#m , 1�(m+1)], m # Z+ ,
vanishing on the negative ray. It is evident that ��

m=1 #̂m �m<� and
#̂m�m a 0.

Let

U(x+i#)=
x
?

:
�

m=0
|

m�(e3#̂m)�|t|�(m+1)�(e3#̂m+1)
[m+log(1+t2)]

dt
x2+(t&y)2 .

The series of integrals on the right-hand side of this equality converges
because

:
�

m=1

[(m+1) #̂m+1&m#̂m]�m<�.

The positive function U is harmonic in the right halfplane. Let U� (z) be a
harmonic function that is conjugate to U. Define

F(z)=exp[&U(z)&iU� (z)].

This function is analytic and bounded by 1 in the right halfplane. Besides,
it tends to 0 as z � � inside some angles adjacent to the imaginary axes.
If

f (t)=
1

2?i |
&�

&i�
F(z) exp[zt] dz,

then f is nontrivial, but vanishes on the negative ray. We will prove that
f # P[#̂m]. For this purpose, we define the family of polynomials

Pm (t; {)

=
1

2?i |
im�(e3#̂m)

&im�(e3#̂m)
F(z) exp[z{] :

m

j=0

(z(t&{)) j

j !
dz, m # Z+ , { # R.
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We have

| f (t)&Pm (t; {)|

� } |
&im�(e3#̂m)

&i�
F(z) exp[z{] dz }

+ } |
im�(e2#̂m)

&im�(e3#̂m)
F(z) exp[z{] \exp[z(t&{)]& :

m

j=0

(z(t&{)) j

j ! + dz }
+ } |

i�

im�(e3#̂m)
F(z) exp[z{] dz }=J1+J2+J3 . (18)

Again, we evaluate each term separately. The estimate of J1 and J3 does
not depend on {.

J1� :
�

j=m
|

& j�(e3#̂j)

&( j+1)�(e3#̂j+1)
exp[&j]

dy
1+#2<? exp[&m]. (19)

The estimate of J3 is similar to the estimate of J1:

J3<? exp[&m]. (20)

To evaluate J2 , let us assume that |t&{|�#m . Then we have

J2�
2m

e3#̂m
:
�

j=m+1
\ m

e3#̂m
#̂m+

j

< j!

�
2m

e3#̂m
:
�

j=m+1

(m�(e2j)) j

�
2m

e3#̂m (1&exp[&2])
exp[&2(m+1)]�exp[&m]. (21)

(18), (19), (20), and (21) together imply that f # P[#̂m]. For the case d=1
the necessity is proved.

Since the restriction of f # P[#m] on every affine subspace [x=
(x1 , ..., xd) # Rd : xi1=x0

i1 , ..., xil=x0
il] belongs to the space P[#m] of func-

tions of (d&l) variables, the sufficiency can be proved by induction on
dimension. To prove the necessity in the general case, we should only let

f� (x1 , ..., xd)= f (x1); P� m (x1 , ..., xd ; !1 , ..., !d)=Pm (x1 ; !1)

where f (t) and [Pm (t; {)] were defined in the proof of the necessity in the
one-dimensional case. Theorem 5 is proved.
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Analyticity (Proofs of Theorems 7 and 8)

Proof of Theorem 7. It is obvious that (ii) implies (iii). Let us verify
that (iii) O (i). Fix an arbitrary point ! # Rd. The series

P0(x; !)+(P1(x; !)&P0(x; !))+ } } } +(Pm+1(x; !)&Pm (x; !))+ } } }

converges to f uniformly on the ball [x # Rd : |x&!|�q�2] where q=
lim infm � � #m . Since the general term of this series tends to 0 exponen-
tially, by the S. Bernstein Inequality its sum is a holomorphic function in
some polydisk in Cd centered at the point !. The size of the polydisk does
not depend on !. Therefore, f can be analytically extended into some layer
symmetric with respect to Rd. To finish the proof, we should only verify
that (i) O (ii).

Assume that (i) is true. For every ! # Rd the funtion f can be expanded
into the power series

f (z)= :
k # (Z+)d

ck (z&!)k

converging uniformly on the polydisk

6=6!=[z=(z1 , ..., zd) # Cd : |zj&!j |�H�d, j=1, ..., d].

Here,

ck=
1

(2?i)d | } } } |
fr(6)

f (") d"1 } } } d"d

("&z)k+1 , k, 1=(1, ..., 1) # (Z+)d,

and fr(6)=[z=(z1 , ..., zd) # Cd : |zj&!j |=H�d, j=1, ..., d]. Since M=
M( f ; !)=max[ | f (z)| : z # fr(6!)]<�, the Cauchy Inequalities imply
that

|ck|�M(d�H) |k|1, k # (Z+)d.

If |x&!|�H(e2d) and if m # N is large enough, then

| f (x)&Tm (x; !)|�M :
|k|1>m

(d�H) |k|1 (H�e2d) |k|1

=M :
�

&=m+1

exp[&2&] :
|k|1=&

1

�M :
�

&=m+1

&d exp[&2&]�M exp[&m].
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Therefore, f # T[#m ; K(!)] where K(!)=M( f ; !) provided that
lim supm � � #m<H�(e2d). Theorem 7 is proved.

Proof of Theorem 8. The implications (ii) O (iii), (ii) O (iv), (iii) O (v),
and (iv) O (v) are evident. So, we should prove the validity of the implica-
tions (i) O (ii) and (v) O (i).

For some particular cases the implication (i) O (ii) was verified earlier
(see [Lo1] and [Lo2]). Here we will prove the general case. We need the
following lemma:

Lemma 1. Given d # N, \ # (0, �), and _ # (0, �), let a finite number q
satisfy the inequality

q\>e#\_ (22)

where #=max[1, 2\&1]. Then

\f # [\, _]d \=>0 _C<� \z(0) # Cd \m # N :

max[ | f (z)&Tm (z; z(0))| : |z&z(0)|�m1�\�q]

�C exp[#(_+=) |z(0)|\] \e#\(_+=)
q\ +

m

. (23)

Proof of Lemma 1. Let q satisfy inequality (22). It is enough to prove
(23) only for small =>0. So, we can assume that

q\>e#\(_+=).

Let

C=sup[ | f (z)| exp[&(_+=�2) |z| \] : z # Cd].

By the Cauchy Inequalities we have

|Dk f (z(0))�k! |

�min[min[max[ | f (z(0)+")| �(rk1
1 } } } rkd

d ) : |" j |=rj ; j=1, ..., d] :

r2
1+ } } } +r2

d=r2] : r>0]

�C exp[#(_+=�2) |z(0)|\] \e#\(_+=�2)
|k| 1 +

|k|1 �\

<�`
d

j=1
\ kj

|k| 1+
kj

. (24)
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Using this estimate, we obtain

max[ | f (z)&Tm (z; z(0))| : |z&z(0)|�m1�\�q]

�max { :
|k|1>m

|Dk f (z(0))(z&z(0))k | �k ! : |z&z(0)|�m1�\�q=
�C exp[#(_+=�2) |z(0)|\] :

|k|1>m \e#\(_+=�2)
q\ |k| 1 +

|k|1�\

_max[rk1
1 } } } rkd

d : r2
1+ } } } +r2

d=(m1�\�q)2]<�`
d

j=1
\ kj

|k| 1+
kj

=C exp[#(_+=�2) |z(0)|\] :
&>m \e#\(_+=�2)m

q\& +
&�\

:
|k|1=&

1

=C exp[#(_+=�2) |z(0)|\] :
&>m \e#\(_+=�2)m

q\& +
&�\

&d

=C exp[#(_+=�2) |z(0)|\] :
&>m \e#\(_+=)m

q\& +
&�\

=C exp[#(_+=�2) |z(0)|\] :
&>m \e#\(_+=)

q\ +
&�\

=C exp[#(_+=) |z(0)|\] \e#\(_+=)
q\ +

m

.

Lemma 1 is proved.

Now we can easily prove the validity of the implication (i) O (ii). Let
f # [\; _]d for some _ # (0, �). Let ==1, and let p=q&1 where

q=e2#\(_+1).

By Lemma 1 the estimate

max[ | f (x)&Tm (x; !)| : |x&!|�m1�\�q]

�C exp[#(_+1) |!|\&m]=C exp[#(_+1) |!|\] exp[&m]

holds for every ! # Rd and every natural m. The implication (i) O (ii) is
true.

Let (&) be fulfilled, and let

0<*< 3
- e&1. (25)
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Put n&=3&�\q, & # N. The series

P3& (x)+ :
�

j=0

[P3&+ j+1(x)&P3&+ j (x)]=P3& (x)+ :
�

j=0

Q j (x)

converges to f (x) uniformly on the ball [x # Rd : |x|�n&]. By the
S. Bernstein Inequality the estimate

|Q j (z)|�2C exp[&3&+ j](1+*)3&+ j
, j # Z+ , (26)

is valid at every point z of the product of d ellipsis with foci and \n& and
the sum of semiaxes equal to (1+*)n& . By (25) the series (26) converges
uniformly on this product. Its sum is an analytic extension of f. Since & is
arbitrary, the function f is entire.

Let us prove that f # [\; �)d . The absolute value of the difference
between | f | and |P3& | is bounded by some positive constant independent of
& on the polydisk [z # Cd : |zj |�*n& , j=1, ..., d]. To estimate

max[ |P3& (z)| : |zj |�*n& , j=1, ..., d],

we introduce two sequences:

M+=max[ |P3+ (x)| : |xj |�n+ , j=1, ..., d], +=0, 1, ... ;

m+=max[ |P3+ (x)| : |xj |�n+&1 , j=1, ..., d], +=1, 2, ... .

For all natural + we have

m+�M+&1+2C exp[&3+&1].

Besides,

M+�m+ (1+2h+2 - h+h2)3+d

where 2h=31�\&1 (see [N, Ch. IV]). Both of these inequalities imply that

M+�m+ }3+d�(M+&1+2C exp[&3+&1]) }3+d�M+&1 '3+d

�M+&2 '3+d+3+&1d� } } } �M0 '(3++ } } } +1)d�M0 |3+d.

Here }, ', and | are some constants that do not depend on d. Therefore,
we have the estimate

max[ |P3& (z)| : |zj |�*n& , j=1, ..., d]�M0 |O((*n&)\)

=exp[O((*n&)\)], & � �.

Consequently,

max[ | f (z)| : |zj |�*n& , j=1, ..., d]�exp[O((*n&)
\)], & � �.
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Since Mf (r)=max[ | f (z)| : |zj |�r, j=1, ..., d] is a monotone function and
n&�n&&1=31�\, we have f # [\, �)d . Theorem 8 is proved.

Applications (Proofs of Theorems 9 and 10)

Proof of Theorem 9. Assume that _=1��we can always reduce the
general case to this particular one using the dilatation z [ z�_. Let
f # [1; 1]d . According to estimate (24), for any k # (Z+)d"[(0, ..., 0)] we
have

|Dkf (0)| �k !�C \e(1+=�2)
|k| 1 +

|k|1

<�`
d

j=1
\ kj

|k| 1+
kj

<C \ 2e
|k| 1+

|k|1

<�`
d

j=1
\ kj

|k| 1+
kj

. (24)

Besides, by Lemma 1 for every m # N

max[ | f (z)&Tm (z; 0)| : |z|�m�q]�C \e(1+=)
q +

m

<C \2e
q +

m

<C \2
3+

m

.

Here, C=sup[ | f (z)| exp[&(1+=�2) |z|] : z # Cd], 0<=<1, and
q=[3e]+1. Let

.m (z)=Tm (z; 0) {sin(2q - z2
1+ } } } +z2

d �m)

2q - z2
1+ } } } +z2

d�m =
qm

, m # N.

It turns out that the sequence [.m] has the following properties:

(i) [.m]�
m=1/[1; 2q2]d ;

(ii) [.m] converges to f, and this convergence is uniform on each
compact subset of Cd ;

(iii) |x|�- m�(2q - q) O |.m (x)|�5 | f (x)| �6+o(1), m � �;

(iv) |x|�m�q O |.m (x)|�| f (x)|+o(1), m � �;

(v) |x|�m�q O |.m (x)|=o(1), m � �.

Before verifying these properties, notice that all functions .m are bounded
on the real hyperplane Rd. We will presently have the occasion to use this
boundedness.

(i) and (ii) are evident.
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(iii) Let |x|�- m�(2q - q). Since

1&{sin(2q |x| �m)
2q |x| �m =

qm

�qm \1&
sin(2q |x| �m)

2q |x| �m +
�

1
3!

qm(2q |x| �m)2�2q3 |x| 2�(3m)�1�6,

the estimate

|.m (x)|�| f (x)|&| f (x)&Tm (x; 0)|&|Tm (x; 0)| {1&{sin(2q |x| �m)
2q |x| �m =

qm

=
�| f (x)|&| f (x)&Tm (x; 0)| {2&{sin(2q |x| �m)

2q |x| �m =
qm

=
&| f (x)| {1&{sin(2q |x| �m)

2q |x| �m =
qm

=
�5 | f (x)| �6+o(1), m � �

is valid. So, (iii) is proved.

(iv) Let |x|�m�q. By Lemma 1

|.m (x)|�|Tm (x; 0)|�| f (x)|+| f (x)&Tm (x; 0)|=| f (x)|+o(1), m � �.

(v) (27) implies the inequality

|Tm (x; 0)|�C :
|k|1�m \ 2e

|k| 1+
|k|1

|x1|k1 } } } |xd |kd<�`
d

j=1
\ kj

|k| 1+
kj

.

Therefore,

max[ |Tm (x; 0)| : |x|=r]�C :
|k|1�m \ 2er

|k| 1+
|k|1

.

Let r=|x|�m�q. Then

max[ |.m (x)| : |x|=r]�C } sin(2qr�m)
2qr�m }

qm

:
|k|1�m \ 2er

|k| 1+
|k|1

�C { m
2qr=

qm

:
&�m \2er

& +
&

&d

�C {1
2=

qm

:
&�m \3em

&q +
&
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�C {1
2=

qm

:
&�m

(4m�q)&

&!

�C[e�2q]m=o(1), m � �.

(v) is proved.

Now, the proof is easy. First assume that E is an =-net satisfying the
inequality

2q2=<1.

Under this assumption the statement of Theorem 9 can be proved as
follows: Let

L=sup[ | f (!)| : ! # E]. (28)

Only the case where L<� is of interest for us. By (iv) and (v)

sup[ |.m(!)| : ! # E]�L+o(1), m � �.

Let

8m=sup[ |.m (x)| : x # Rd], m # N.

Without loss of generality, we can assume that there exists such a point
x(m) # Rd that |.m (x(m))|=8m. By the definition of =-net there exists a
point !(m) # E satisfying the inequality |x(m)&!(m)|<=. We have

|.m (x(m))&.m (!(m))|�|x(m)&!(m)| sup[ |grad .m (y)| : y # Rd]

�= sup[ |grad .m (y)| : y # Rd].

By S. Bernstein's estimate of the derivative of entire function of exponential
type that is bounded on the real hyperplane the inequality

sup[ |grad .m (y)| : y # Rd]�2q28m

holds. Two previous inequalities show that

|.m (x(m))&.m (!(m))|�2q2=8m

or

8m&(L+o(1))�2q2=8m .

It means that the estimate

8m�(L+o(1))�(1&2q2=), m � �,
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is valid. Recalling (ii), we see that

sup[ | f (x)| : x # Rd]�L�(1&2q2=).

Using more sophisticated technique than S. Bernstein's estimate,
Beurling [Beu2] proved that the inequality

sup[ | f (x)| : x # Rd]�CL

is valid for every entire function of exponential type 2q2 provided that it is
a priori bounded on the real hyperplane and 2q2=<?. Here, C does not
depend on f, and L is defined by (28). By Beurling's result f is bounded
on Rd upon this, weaker, condition.

We just proved that f is bounded on the real hyperplane. To finish the
proof, we should only repeat the estimate used for .m for f itself substi-
tuting 1 for 2q2 and recall that 2q2<200. Theorem 9 is proved.

Proof of Theorem 10. Let E be such a 1-net in Rd that any affine sub-
space of dimension less than d contains at most of d its points and

inf[ |!&'| : !, ' # E, !{']>0.

Let also g j ("), j=1, ..., d, be such entire functions of exponential type 1 in
C that |g j ({)|�1 on the real line,

\j # [1, ..., d] \m # N : lim
{ � \�

{m�g j ({)=0,

and

|
�

&�

log+ | gj ({)| d{
1+{2 <�.

Define a weight-function .(!), !=(!1 , ..., !d), as |>d
j=1 gj (!j)| on E and

set .(x)=exp[ |x|] outside E.
Let us check the fulfillment of properties (i)�(iv) of ..

(i) and (ii) are evident.

(iii) Without loss of generality, we can assume that A is the subspace
[x=(x1 , ..., xd) # Rd: xi+1= } } } =xd=0], 1�l<d. For a while, we will
denote vectors of Rl by x and the restriction . | Rl by the same letter ..
Assume that algebraic polynomials are not dense in the space C 0

.(Rl). The
dual space of C 0

.(Rl) consists of all such measures + that

|
Rl

.(x) d |+|(x)<�. (29)
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If polynomials are not dense in C 0
.(R i), then the space of Fourier trans-

forms of measures satisfying inequality (29) is not 2-quasianalytic. Really,
let + be an orthogonal measure to all polynomials. Define

F(t)=|
Rl

exp[i(t, x)] d+(x).

where (t, x)=�l
j=1 tjxj is a scalar product in Rl. It is evident that

F # C �(Rl) and that for every k # (Z+) l

DkF(0)=0.

Since .(x)=exp[ |x|] everywhere except at most at d points, F is indeed
a function holomorphic in some layer symmetric with respect to Rl. There-
fore, F(t)#0, +=0, and algebraic polynomials are dense in C 0

.(R l).

(iv) Denote by R a set of all algebraic polynomials P such that their
norms in C 0

.(Rd) satisfy the inequality

"P(x)<`
d

j=1

(xj&i)"�1.

Let

M(z)=sup[ |P(z)|: P # R], z # Cd.

We will prove that if algebraic polynomials are dense in the space
C 0

.(Rd), then M(z)=� for all z=(z1 , ..., zd) such that Im z1 } } } Im zd{0.
This statement seems to be well-known (for the case where d=1 it is the
well-known Mergelian criterion of density [Me]), but we suspect that for
the case where d>1 it exists only as mathematical folk-lore. For the
comfort of the readers, we provide its proof here.

Assume that algebraic polynomials are dense in C 0
.(Rd). Using the

description of dual space and Stiltjes Inversion Formula, one can easily
prove that the system [1�>d

j=1(xj&zj): Im z1 } } } Im zd{0] is complete in
C 0

.(Rd). Let =>0, and let z=(z1 , ..., zd), Im z1 } } } Im zd{0, be an arbitrary
point of Cd. There exists a polynomial P satisfying the inequality

"1<`
d

j=1

(xj&zj)&P(x)"<=.

For some finite value Cz>0 that does not depend on = the polynomial

Q(x)=\1&P(x) `
d

j=1

(xj&zj)+<(Cz=) # R.

On the other hand, |Q(z)|=1�(Cz=). Since =>0 is arbitrary, M(z)=�.
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By the Beurling�Malliavin Theorem on multiplicator [BM] (see also
[K]) for every '>0 there exist nontrivial entire functions hj (�) # [1; ']1 ,
j=1, ..., d, such that

sup[ |({&i) gj ({) hj ({)|: { # R]�1.

Therefore, the inequality

sup {}P(!) `
d

j=1

hj (!j) } : !=(!1 , ..., !d) # E=�1

holds for every polynomial P # R. Certainly, we can choose ' so that

200' - d<?.

Since the exponential type of entire function P(z) >d
j=1 hj (zj) does not

exceed ' - d, Theorem 9 shows that

sup {}P(x) `
d

j=1

hj (xj) } : x=(x1 , ..., xd) # Rd=�C

where C does not depend on P. Using the Phragmen�Lindelo� f Principle,
we see that the estimate

}P(z) `
d

j=1

hj (zj) }�C exp['( |Im z1|+ } } } +Im zd | )]

is valid for every z # Cd and every P # R. Let z(0) # Cd, Im z (0)
1 } } } Im z (0)

d {0,
be such a point that >d

j=1 hj (z (0)
j ){0. Then

M(z(0))�C exp['( |Im z (0)
1 |+ } } } +|Im z (0)

d | )]<`
d

j=1

|hj (z (0)
j )|<�.

Therefore, algebraic polynomials are not dense in C 0
.(Rd). Theorem 10 is

proved.
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